publications
This section presents a collection of scientific papers to which I have contributed, or that were inspired by my research and ideas. My keen interest in the foundational principles of deep learning and neural networks has led me to explore a wide array of topics, ranging from in-depth analyses of their inner mechanisms to practical applications in various domains. Many of these endeavors were directly influenced by the projects I participated in. Alongside my colleagues, driven by curiosity and enthusiasm, we ventured into the exploration of somewhat unconventional concepts. I invite you to explore these works and share in our journey of discovery. 🤗
2023
- Kölle, M., Illium, S., Zorn, M., Nüßlein, J., Suchostawski, P., and Linnhoff-Popien, C. 2023. Improving Primate Sounds Classification using Binary Presorting for Deep Learning. Springer CCIS Series.
- Zorn, M., Illium, S., Phan, T., Kaiser, T.K., Linnhoff-Popien, C., and Gabor, T. 2023. Social Neural Network Soups with Surprise Minimization. MIT Press Direct.
- Kölle, M., Illium, S., Hahn, C., Schauer, L., Hutter, J., and Linnhoff-Popien, C. 2023. Compression of GPS Trajectories using Autoencoders. arXiv preprint arXiv:2301.07420.
2022
- Gabor, T., Illium, S., Zorn, M., et al. 2022. Self-replication in neural networks. Artificial Life 28, 2, 205–223.
- Friedrich, M., Illium, S., Fayolle, P.-A., and Linnhoff-Popien, C. 2022. CSG Tree Extraction from 3D Point Clouds and Meshes Using a Hybrid Approach. Computer Vision, Imaging and Computer Graphics Theory and Applications: 15th International Joint Conference, VISIGRAPP 2020 Valletta, Malta, February 27–29, 2020, Revised Selected Papers, Springer International Publishing Cham, 53–79.
- Illium, S., Schillman, T., Müller, R., Gabor, T., and Linnhoff-Popien, C. 2022. Empirical Analysis of Limits for Memory Distance in Recurrent Neural Networks. 14th International Conference on Agents and Artificial Intelligence: ICAART, 308–315.
- Müller, R., Illium, S., Phan, T., Haider, T., and Linnhoff-Popien, C. 2022. Towards Anomaly Detection in Reinforcement Learning. Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, 1799–1803.
- Nüßlein, J., Illium, S., Müller, R., Gabor, T., and Linnhoff-Popien, C. 2022. Case-Based Inverse Reinforcement Learning Using Temporal Coherence. Case-Based Reasoning Research and Development: 30th International Conference, ICCBR 2022, Nancy, France, September 12–15, 2022, Proceedings, Springer International Publishing Cham, 304–317.
- Illium, S., Zorn, M., Kölle, M., Linnhoff-Popien, C., and Gabor, T. 2022. Constructing Organism Networks from Collaborative Self-Replicators. arXiv preprint arXiv:2212.10078.
- Illium, S., Griffin, G., Kölle, M., Zorn, M., Nüßlein, J., and Linnhoff-Popien, C. 2022. VoronoiPatches: Evaluating A New Data Augmentation Method. arXiv preprint arXiv:2212.10054.
2021
- Gabor, T., Illium, S., Zorn, M., and Linnhoff-Popien, C. 2021. Goals for self-replicating neural networks. Artificial Life Conference Proceedings 33, MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info …, 101.
- Illium, S., Müller, R., Sedlmeier, A., and Popien, C.-L. 2021. Visual Transformers for Primates Classification and Covid Detection. Proc. Interspeech 2021, 451–455.
- Müller, R., Illium, S., and Linnhoff-Popien, C. 2021. A Deep and Recurrent Architecture for Primate Vocalization Classification. Proc. Interspeech 2021, 461–465.
- Müller, R., Illium, S., and Linnhoff-Popien, C. 2021. Deep recurrent interpolation networks for anomalous sound detection. 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 1–7.
2020
- Müller, R., Langer, S., Ritz, F., Roch, C., Illium, S., and Linnhoff-Popien, C. 2020. Soccer Team Vectors. Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part II, Springer International Publishing, 247–257.
- Friedrich, M., Illium, S., Fayolle, P.-A., and Linnhoff-Popien, C. 2020. A Hybrid Approach for Segmenting and Fitting Solid Primitives to 3D Point Clouds. 15th International Joint Conference on Computer Graphics Theory and Applications.
- Sedlmeier, A., Müller, R., Illium, S., and Linnhoff-Popien, C. 2020. Policy entropy for out-of-distribution classification. Artificial Neural Networks and Machine Learning–ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II 29, Springer International Publishing, 420–431.
- Müller, R., Ritz, F., Illium, S., and Linnhoff-Popien, C. 2020. Acoustic anomaly detection for machine sounds based on image transfer learning. arXiv preprint arXiv:2006.03429.
- Illium, S., Friese, P.A., Müller, R., and Feld, S. 2020. What to do in the meantime: A service coverage analysis for parked autonomous vehicles. AGILE: GIScience Series 1, 7.
- Illium, S., Müller, R., Sedlmeier, A., and Linnhoff-Popien, C. 2020. Surgical mask detection with convolutional neural networks and data augmentations on spectrograms. arXiv preprint arXiv:2008.04590.
- Müller, R., Illium, S., Ritz, F., and Schmid, K. 2020. Analysis of feature representations for anomalous sound detection. arXiv preprint arXiv:2012.06282.
- Müller, R., Illium, S., Ritz, F., et al. 2020. Acoustic leak detection in water networks. arXiv preprint arXiv:2012.06280.
2019
- Gabor, T., Illium, S., Mattausch, A., Belzner, L., and Linnhoff-Popien, C. 2019. Self-Replication in Neural Networks. .
- Elsner, D., Langer, S., Ritz, F., Mueller, R., and Illium, S. 2019. Deep neural baselines for computational paralinguistics. arXiv preprint arXiv:1907.02864.